

 Getting started

	Installation to Microsoft 365
	Installation to SharePoint 2019/SE
	Design forms
	Troubleshooting

User guide

	Settings
	Form sets
	Containers
	Controls
	SharePoint fields
	Common fields
	JavaScript
	CSS
	SharePoint form panel
	SharePoint web part
	Microsoft Teams tab
	Forms versioning

Provisioning forms

	Provisioning API
	Provisioning forms (samples)
	Provisioning Form sets and Panel (samples)

Examples

	Ticket management system
	Dynamic form for a user group
	Conference room reservation system
	Discussion within a SharePoint form
	Version history within a SharePoint form
	Organize related docs in libraries and folders
	Duplicate item button for List or Library
	Move new form page to another location

General

	Version history (Microsoft 365)
	Version history (SharePoint 2019/SE)
	Roadmap
	YouTube channel
	Licensing
	Manage subscription
	Privacy policy
	Data protection and security

Multilingual support

	Create forms in multiple languages
	Align fields to the right for Arabic, Hebrew and other languages

Navigation between forms

	Generate a link to a SharePoint form
	Redirect user after form submission
	Open edit form by default for a user group
	Open form in a dialog

Generating PDF documents

	Save SharePoint form as PDF
	Generate PDF from DOCX template with Plumsail Processes
	Generate PDF from DOCX template with Word Online (Business)

Integration with Power Automate

	Send e-mail notification after submitting SharePoint form
	Start flow after submitting SharePoint form and wait for results
	Start flow from List or Library and pass selected items

 Documentation

 ›
 How to save SharePoint form as PDF for printing

How to save SharePoint form as PDF for printing

Plumsail Forms has built-in functionality allowing to export any SharePoint form to PDF by clicking the button on the right side of the toolbar.

Or you can call the fd.exportToPDF when the form is submitted:

//export PDF on form submission
fd.spBeforeSave(function(){
 return fd.exportToPDF('FileName');
})

From this article, you will learn how to customize the appearance of the resulting PDF file and how to solve common problems.

	Form

	Page layout

	Size

	Orientation

	Margins

	Page breaks

	Content adjustments

	Show or hide blocks of elements

	Change fields appearance

	Adjust Data Table and List or Library

	Expand Tabs and Accordion sections

	Non-Latin and special characters

	Header, footer, and page numbering

	Conclusion

Form

Assume that you have a SharePoint form that you need to export into PDF. In this example, we have a simple Invoice form with the following fields and controls:

	Company Name (text field);

	Address (text field);

	ZIP code (text field);

	Country (choice field);

	Email (text field);

	Purchased Products (List or Library control).

This is our form:

Next, we will consider various approaches to redesigning the final PDF document.

Page layout

With JavaScript, you can specify the basic layout properties of PDF pages, such as page size, margins, etc. Let’s have a closer look at each property.

Size

paperSize option specifies the size of the pages.

By default, the option is ‘auto’—the page automatically adjusts its size to the content.
You can set this option to one of the predefined paper sizes or specify a custom size.

The following predefined paper sizes are available:

	A0-A10, B0-B10, C0-C10,

	Executive, Folio, Legal, Letter, Tabloid.

Examples:

Paper size: A4

fd.pdfOptions = {
     paperSize: 'A4'
};

Paper Size: Custom

fd.pdfOptions = {
 paperSize: ['297mm', '297mm']
};

For the invoice document, we select the standard A4 page size.

Orientation

landscape option specifies the orientation of the pages. By default, the option is ‘false’—the page orientation is portrait (vertical).
To change the orientation of PDF pages to landscape (horizontal), set the parameter to true.

Examples:

Page Orientation: landscape (horizontal)

fd.pdfOptions = {
 paperSize: 'A4',
 landscape: true
};

Page Orientation: portrait (vertical)

fd.pdfOptions = {
 paperSize: 'A4',
 landscape: false
}

The optimal page orientation for the invoice is portrait (vertical).

Margins

margin is an object that defines the top, left, right, and bottom margins of a page.
You can set the same size for all margins or specify the size of the margins for each side of the page separately.

Examples:

Page Margins: one size

fd.pdfOptions = {
 paperSize: 'A4',
 landscape: false,
 margin: '10mm'
};

Page Margins: custom size

fd.pdfOptions = {
 paperSize: 'A4',
 landscape: false,
 margin: {
 left   : '20mm',
 top    : '40mm',
 right  : '20mm',
 bottom : '40mm'
 }
};

Page breaks

By default, the page breaks are placed automatically depending on the page dimensions: page size, margins, and orientation.
But you can define where you want the page to break manually using the forcePageBreak option that holds the CSS class of the element before which the page break occurs.

For instance, you want the page to break before the Data Table control.
For this, you need to add a CSS class to the parent grid and specify this class in the forcePageBreak option.

fd.pdfOptions = {
 paperSize: 'A4',
 margin: '5 mm',
 forcePageBreak: '.page-break'
};

Content adjustments

You can change the appearance of the resulting PDF using the ‘k-pdf-export’ class. CSS rules for this class apply only to the PDF document..

Show or hide blocks of elements

For instance, you want to hide elements in the resulting PDF or vice versa. These can be buttons, fields, titles, containers, etc.

In this example, we will hide the Submit button in the resulting PDF. First, we assign the ‘pdf-hide’ CSS class to it:

Then, add the following rule to the CSS editor to hide it in PDF:

.k-pdf-export .pdf-hide {
 display: none !important;
}

You can assign the same class to each element you want to hide in the PDF and hide them all at once.

Additionally, we add the date and contact information to the PDF document, but we don’t want it to be visible in the form.
To do so, we put the contact information in the Grid and assign it a CSS class ‘company-info’.

Next, we add rules to the CSS editor that make the company information visible only in the PDF document.

/*hide company information on the form*/
.company-info {
 display: none !important;
}

/*show company information in PDF document*/
.k-pdf-export .company-info {
 display: contents !important;
}

And this is the result:

Change fields appearance

Also, we want to change the appearance of the input controls in the PDF document.
In particular, we want to hide field titles and input borders. We can do that with the CSS rules:

/*hide field titles*/
.k-pdf-export label.fd-field-title {
 display: none;
}

/*hide input borders*/
.k-pdf-export span.k-dropdown-wrap.k-state-default,
.k-pdf-export .fd-form input.form-control {
 border: none !important;
}

And get rid of the icons: the arrow icons in the drop-down, number fields, and the calendar icon in the Date and Time field.

.k-pdf-export span.k-select {
 display: none !important;
}

Here you can see the difference between the form and the PDF document:

Adjust Data Table and List or Library

One more thing you may want to change is the appearance of the Data Table control in the PDF document.

Use the following CSS rules to hide the last command column of the Data Table, toolbar, and colored lines.

/* hide delete column and toolbar from datatable */
.k-pdf-export .fd-datatable table tr th:last-child,
.k-pdf-export .fd-datatable table tr td:last-child,
.k-pdf-export .fd-datatable div.k-header.k-grid-toolbar {
 display: none;
}

/* remove colored lines from datatable */
.k-pdf-export .fd-datatable table tr.k-alt {
 background-color: white;
}

This is the difference between the form and the PDF file:

To do the same for List or Library control use this CSS:

/* hide delete column and toolbar from List or Library */
.k-pdf-export .fd-sp-datatable-wrapper table tr th:nth-of-type(1),
.k-pdf-export .fd-sp-datatable-wrapper table tr td:nth-of-type(1),
.k-pdf-export .fd-sp-datatable-wrapper table tr th:nth-of-type(2),
.k-pdf-export .fd-sp-datatable-wrapper table tr td:nth-of-type(2),
.k-pdf-export .fd-sp-datatable-toolbar {
 display: none !important;
}

/* remove colored lines from List or Library */
.k-pdf-export .fd-sp-datatable-wrapper table tr.k-alt {
 background-color: white;
}

This is how the List or Library control looks in a web form and in PDF file:

Expand Tabs and Accordion sections

If you use Tab or Accordion containers, you would probably want to display all its content at once in the resulting PDF file. This can be achieved using CSS rules.

For example, I have a three tab on the form:

Since we are going to hide tabs themselves, you can add a Plain Text control title to each tab and give it a common CSS class. The titles will only be shown on the exported PDF, so we give each title ‘tab-title’ CSS class:

Next, add the following CSS rules to the CSS editor:

/* show tab contents for all tabs */
.k-pdf-export .tabset .tab-content div.tab-pane.fade {
 display: block !important;
 opacity: 1 !important;
}

/* hide tab navigation bar */
.k-pdf-export .tabset ul.nav.nav-tabs {
 display: none !important;
}

/* hide tab titles by default */
.tab-title {
 display: none;
}

/* show tab titles when exporting */
.k-pdf-export .tab-title {
 display: block;
}

And then, after exporting to PDF, we get this:

Similar to tabs, accordion panels can be extended with appropriate CSS styles.

This is the form with Accordion container:

Add the following CSS to expand Accordion in the resulting PDF file:

/* show contents for all Accordion panels */
.k-pdf-export .accordion .card-block {
 display: block !important;
 height: auto !important;
}

/* gray out all navigation links */
.k-pdf-export .accordion>.card>.card-header>.nav-link {
 background-color: #fff;
 color: #55595c;
}

And get the following result on PDF page:

Non-Latin and special characters

Suppose you have a form in French, German, or Arabic. If you apply font styling to the text, you may notice that the exported PDF stops displaying Unicode characters.

For example, if you make the following text italic:

You get the following in the resulting PDF document:

The DejaVu Sans font contains all Unicode characters. To avoid this problem, you need to declare DejaVu Sans font using the CSS font-face:

/*apply DejaVu Sans font to the content*/
.k-pdf-export {
 font-family: 'DejaVu Sans', 'Arial', sans-serif !important;
 font-size: 12px;
}

/*declair DejaVu Sans font*/
@font-face {
 font-family: 'DejaVu Sans';
 src: url('https://kendo.cdn.telerik.com/2020.1.406/styles/fonts/DejaVu/DejaVuSans.ttf') format('truetype');
}

@font-face {
 font-family: 'DejaVu Sans';
 font-weight: bold;
 src: url('https://kendo.cdn.telerik.com/2020.1.406/styles/fonts/DejaVu/DejaVuSans-Bold.ttf') format('truetype');
}

@font-face {
 font-family: 'DejaVu Sans';
 font-style: italic;
 src: url('https://kendo.cdn.telerik.com/2020.1.406/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf') format('truetype');
}

@font-face {
 font-family: 'DejaVu Sans';
 font-weight: bold;
 font-style: italic;
 src: url('https://kendo.cdn.telerik.com/2020.1.406/styles/fonts/DejaVu/DejaVuSans-Oblique.ttf') format('truetype');
}

And this is how the client data renders in the PDF file:

Header, footer, and page numbering

You can add a header, footer, and page numbering to the PDF. In our example, we add a page number to the header and a general message to the footer.

For this, we add an HTML control with this code anywhere in the form.

<script type="x/kendo-template" id="page-template">
 <div class="page-template">
 <div class="header">
 <div style="float: right">Page #:pageNum# of #:totalPages#</div>
 </div>
 <div class="footer">
 The purchased products and services are delivered in accordance with the terms and conditions published on plumsail.com website and agreed during the online order. For technical support please contact sales@plumsail.com
 </div>
 </div>
</script>

Next, add the rules below to the CSS editor. These rules define the position and styling of the header and the footer:

.page-template > * {
 position: absolute;
 left: 20px;
 right: 20px;
 font-size: 90%;
}

.page-template .header {
 top: 20px;
 border-bottom: 1px solid #000;
}
.page-template .footer {
 bottom: 20px;
 border-top: 1px solid #000;
}

Finally, we add the following code to the JS-editor:

fd.pdfOptions = {
 paperSize: 'A4',
 margin: '10mm',
 forcePageBreak: '.page-break',
 template: $('#page-template').html()
};

The code gets the content of the HTML element by its id, ‘page-template’, and assigns it to the template option.

And this is the resulting PDF file:

Conclusion

The above tips and tricks are good for exporting simple forms directly from the browser.

But if your form is more complex or large, we suggest you have a look at other options for creating PDF files:

	Generate PDF from DOCX template with Plumsail Processes

	Generate PDF from DOCX template with Word Online (Business)

